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Abstract 

 

Clinker is among the principal components 

of cement, and the amount of free lime content 

within this element is considered as the most 

influential factor to determine the quality of cement. 

At present, the most common free lime 

measurement method does not allow for immediate 

results if the amount of free lime found on clinker is 

deviant. In practical production, free lime content is 

mostly measured by offline laboratory analysis, 

which results in having multiple hour delay results 

while cement production is a continuous non-stop 

process. This research aims to use different methods 

and approaches to build a free lime prediction 

system that would allow operators to take real-time 

action. In this study, we use two different data 

structuring methods and the following model 

approaches: Logistic Regression, Support Vector 

Machines and Random Forest Classifier. 

    

 

1. Introduction 

Cement is a construction material with high global 

demand; reports suggest that 4.1 Gt of cement were 

produced globally in 2019 [1]. Due to the 

importance that this construction material has in 

today’s world, cement quality measurement is a 

crucial aspect of its production. Moreover, cement 

production is not performed in batches, it is a 

continuous process that gives no time windows to 

solve production issues, which escalate even more 

the importance of its quality measurement methods. 

This arises a major problem in the cement industry, 

which is the lack of real-time cement quality 

measurements. To understand how the quality of 

cement is measured first we need to briefly describe 

the production process of cement.   

 The raw materials that are used for cement 

production are a mixture of minerals containing 

calcium oxide (CaO), silicon dioxide (SiO2), 

aluminum oxide (Al2O3) and ferric oxide (Fe2 O3). 

These materials enter a kiln where, at high 

temperatures, melt and react with each other. This 

process is called calcination, and it is key to the 

sintering of the materials and thus the creation of 

what we know as clinker. Clinker is a semi-finished 

product and the base component for cement 

production [2]. The quality of cement is measured 

by many factors, but the content of free lime (FCaO) 

in clinker is especially important to judge its quality. 

Free lime content is the percentage of calcium oxide 

that does not react with the other components, 

thereby it is free. The lower the free lime the closer 

the reactions are to completion. Excess free lime 

results in undesirable effects such as volume 

expansion, increased setting time or reduced 

strength [3]. The free lime target is typically under 

1.5% [4].  

 Offline laboratory analysis is one of the 

most popular methods of measuring free lime 

content in cement, and thus controlling its quality. 

The challenge that this presents is that the results of 

the free lime content have a significant time delay, 

which makes it impossible for the operators to detect 

the problem in real-time, and thus take the necessary 

measures to fix it. Even though clinker with an 

atypical content of free lime can be recycled, it 

represents inefficient usage of resources and 

increased production costs.  

 

 A model for the prediction of free lime 

content would largely help address these problems, 

improving production process and thereby resulting 

in lower revenue loss and more profit. To tackle this 

problem, we used hardware-sensor data to 

experiment with three different models: Logistic 

Regression, Support Vector Machine and Random 

Forest Classifier to predict free lime classification 

(optimal quality being below 1.5% of free lime 

content and low quality being above 1.5%).  

 

 

 



2. Dataset, Features, & Evaluation 

Metrics 

              

2.1 Dataset Overview  

The data used for this study was from 

Cemex, a Mexican multinational company 

dedicated to the construction industry. The data are 

specifically from a plant in Brooksville United 

States and consists of two main datasets: a features 

dataset and a labels data set. The features dataset 

consisted of nine hardware-sensor numerical 

readings which included: preheater temperature (◦F), 

4th stage temperature (◦F), calciner temperature 1 

(◦F), calciner temperature 2 (◦F), tertiary air 

temperature (◦F), feeding rate (Tonnage per Hour), 

kiln motor power (Watts), kiln rotary velocity 

(RPM), calciner fuel tonnage per hour. Additionally, 

a binary indicator of the kiln status (on/off) was 

included. This dataset is a collection of 130,731 

readings for each hardware-sensor, with a frequency 

of these readings being every 15 minutes.  

On the other hand, the label’s data set 

consisted of 3,520 readings, having the 

measurements of calcination (Percentage), free lime 

content (%), mesh fineness (Microns), and 

saturation factor of CaO. For this study, we only 

used the free lime content data, which is measured 

every hour in an offline laboratory when the kiln is 

turned on. If the kiln is off, the last lime content 

measured is repeated in the data set until the kiln is 

turned on again. The data that was captured when 

the kiln was off was removed, as it does not 

represent the normal behavior of the functional 

oven. In total, there were 112,115 sensor data left, 

and only 3,381 free lime data. To maximize the 

usage of sensor data, the approach taken was to use 

statistical measures that would encompass the 

behavior of sensor data between each free lime data 

registration. The following statistical measures were 

applied and analyzed through statistical and 

correlational testing: standard deviation, average, 

Δlast reading - first reading, and Δmax reading - min 

reading.  Only records with time windows where 

free lime was registered every 1-2 hours were kept 

(this filter was applied since there were time 

windows with duration of up to 653 hours). In order 

to keep the periodicity, the months that had fewer 

free lime records were also eliminated. The final 

data set consisted of 2,660 records.   

         

2.2 Data Preprocessing 

 The first task to properly restructure the 

data set into time frame windows was to apply 

statistical measures to the sensor records between 

each free lime reading. This will encompass all the 

sensor data that would otherwise be ignored. A 

student’s t-test was then performed between each 

statistical measure and the free lime content measure 

for the nine sensors, allowing to know whether the 

difference between these two groups is statistically 

significant.  

2.3 Student’s T-Test 

 The student’s t-test estimates the true 

difference between two groups’ means using the 

ratio of the difference in group means over the 

pooled standard error of both groups. It is calculated 

as follows:  

𝑡 =  
�̅�1 −  �̅�2

√(𝑠2 (
1

𝑛1
+ 

1
𝑛2

))

 

 Where t is the t-value, �̅�1 and �̅�2 are the 

means of the two groups being compared, s2 is the 

pooled standard error of the two groups, and n1 and 

n2 are the number of observations in each of the 

groups [5]. By applying the student’s t-test, we can 

determine whether two sets of groups are 

statistically different or not.  In this case, being 

statistically not different indicates the possibility of 

usage for the indicated statistical measures used to 

encompass sensor data. Results are shown in Table 

1 where “X” indicates the statistical measure for the 

indicated sensor was not statistically different with 

the dependent variable.  

  

https://www.scribbr.com/statistics/standard-error/


1: kiln motor power | 2 : 4th stage temperature | 3: feeding rate | 4: 

kiln rotary velocity | 5: calciner fuel tonnage per hour | 6: 

preheater temperature | 7: calciner temperature 1 | 8: calciner 

temperature 2 | 9: tertiary air temperature  

Table 1: results of student’s t-tests, measures 

statistically not different with dependent variable 

are marked with “X” 

 

Based on results, the ΔLast-First statistical measure 

was chosen among the rest for further analysis, since 

it resulted in the most sensors being statistically not 

different.  

 

 

2.4 Feature Analysis  

Descriptive statistics were then applied for feature 

analysis of the already preprocessed data. At first 

instance, it was determined to ignore the sensor of 

tertiary air temperature since it is missing large 

portions of entries and has a large number of 

outliers. Based on our knowledge of the cement 

production process we assumed that some features 

such as the kiln motor velocity and feeding would be 

highly correlated with the free lime content. Given 

our initial exploration of the data, it was confirmed 

that these features are the highest correlated among 

all others to the free lime content, however, even 

these correlated features were still only weakly 

correlated (Figure 1).  

 

Figure 1: Spearman correlation between variables 

 

Furthermore, we noticed high correlation factors 

between features that indicated multicollinearity. To 

begin with the feature selection, we took note of the 

highest correlated features that would disrupt the 

model due the redundancy of data. For example, we 

notice that there is a high correlation between the 

calciner temperature 1 and calciner temperature 2. 

From our previous research, we know that there is 

only one calciner in the process, therefore we can 

assume there are two sensors measuring the same 

part of the process. Since both sensors resulted as 

statistically different from free lime measurements 

according to the previously made student’s t-test, we 

eliminate both variables from the model.  

We also notice a high correlation between the feed 

rate, kiln’s preheater, and motor speed. This can be 

explained due to the fact that, as the feed rate 

increases, the kiln’s preheater as well as the kiln 

motor’s power must also increase to compensate for 

the higher feed rate. Since the motor speed and the 

feed rate have the highest correlation, and the feed 

rate is more correlated with the dependent variable, 

we proceed by ruling out the motor speed sensor for 

our model.  

In a further analysis to detect any non-linear 

correlations, we found no evidence that any other 

types of correlations exist with the free lime or 

among the features. The scatter plots showed 

worrying information; there was no clear distinction 

between free lime content that derived from either 

high or low temperatures. The distribution of 

sensors in both classifications of the dependent 

variable also behaved in similar ways.  In other 

words, a high free lime content was present in both 

 1 2 3 4 5 6 7 8 9 

Std. Deviation X         

ΔMax-Min  X     X X  

Average X X X  X     

ΔLast-First X  X X X X    



high and low temperature and vice versa. To confirm 

this, a Principal Component Analysis (PCA) was 

implemented to check if this method could make a 

clearer distinction between the high free lime 

content and the low free lime content by reducing its 

dimensions. Given m dimensions in this case 

sensors and n principle components, PCA maps data 

from Rm  to the subspace S ⊂ Rn that preserves most 

of the variance in the data. Unfortunately, the same 

results were given, showing no clear distinction 

between free lime content (Figure 2).  

 

Figure 2: Principal Analysis Component (PCA) 

Going on from these conclusions we then used the 

wrapper method of backward elimination and a VIF 

analysis to select the best subset of features, these 

are preheater temperature, feeding rate, kiln motor 

power and calciner fuel tonnage per hour.  

2.5 Synthetic Minority Oversampling Technique 

(SMOTE) 

The final dataset used for model creation was highly 

unbalanced and therefore needed to undergo a data 

augmentation technique.  One of the main solutions 

to adjust the balance for biased data is the synthetic 

minority oversampling technique (SMOTE) [6]. The 

core idea is that the artificial instance for minority 

instances is generated using k-nearest neighbors of 

sample. In the minority instance, k-nearest samples 

are selected from sample X. Afterward, the SMOTE 

algorithm selects n samples randomly and save them 

as Xi. Lastly, the new sample X´ is generated based 

on the below equation.  

X´ = X + rand × (Xi − X), i = 1, 2, ..., n 

where rand follows a random number uniformly 

distributed in the range (0, 1). By obtaining minority 

instances using SMOTE, the class imbalance is 

reduced thus allowing machine learning and deep 

learning algorithms to learn better [7]. 

2.6 Evaluation Metrics      

 Fundamentally, the goal of our predictor is 

to anticipate if the clinker will have an optimal or 

low quality, according to the free lime content in it 

(optimal quality being below 1.5% of free lime 

content classified as 0 and  low quality being above 

1.5% classified as 1). Hence, this will be treated as 

a binomial classification method. If the model 

effectively predicts low quality clinker, the 

operators will be able to act and adjust parameters 

beforehand. On the other hand, if the model predicts 

optimal quality clinker accordingly, operators will 

keep the current process’ parameters, avoiding to 

make adjustments (by altering volume, heat, etc.) 

and thus negatively affecting the clinker’s quality 

(and possibly increasing costs). Therefore, we can 

conclude that both classes are as important to 

correctly predict in this study.  

Since the dataset has been balanced through 

SMOTE data augmentation technique and there is 

no more importance towards true positives or true 

negatives prediction, accuracy and AUC evaluation 

metrics will be used. Predictive accuracy is the 

performance measure generally associated with 

machine learning algorithms, which represents the 

number of correctly classified data instances over 

the total number of data instances and it’s defined as 

follows: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

where TN is the number of negative examples 

correctly classified (True Negatives), FP is the 

number of negative examples incorrectly classified 

as positive (False Positives), FN is the number of 

positive examples incorrectly classified as negative 

(False Negatives) and TP is the number of positive 

examples correctly classified (True Positives) [8]. 

To complement this metric, we are also using AUC 

ROC as an additional evaluation metric. The 

Receiver Operator Characteristic (ROC) curve is an 

evaluation metric for binary classification problems. 

It is a probability curve that plots the True Positive 

Rate against the False Positive Rate at various 

threshold values and essentially separates the 

‘signal’ from the ‘noise’. The Area Under the Curve 



(AUC) is the measure of the ability of a classifier to 

distinguish between classes and is used as a 

summary of the ROC curve. It is interpreted as being 

the average value of sensitivity for all possible 

values of specificity [9].  

3. Methods 

3.1 Logistic Regression 

In logistic regression, a categorical dependent 

variable Y having G (usually G = 2) unique values 

is regressed on a set of p independent variables 𝒳1, 

𝒳2, ..., 𝒳p [10]. 

The logistic function is of the form: 

 

𝑝(𝑥) =  
1

1 + 𝑒−(𝑥−𝜇)/𝑠
 

 

where μ is a location parameter (i.e. the mean) and s 

is a scale parameter proportional to the variance.  

We decided to use logistic regression since it is a 

simple and easy to interpret method for binary 

classification models [11]. 

 

3.2 Support Vector Machine  

 Support Vector Machines, also known as 

SVMs, are known to produce equally good, if not 

better results than neural networks, while being 

more efficient and producing an actual mathematical 

function [12]. For these reasons, and since SVMs 

have been proved to have good performance when 

trained with small datasets, we decided to move 

forward with this model as it could provide better 

results than the logistic regression.   

A support vector’s machine goal is to find a function 

f(x) that has at most ε deviation from the obtained 

targets yi for all the training data. The tacit 

assumption is that such function f actually exists that 

approximates all pairs (xi , yi) with ε precision. 

Sometimes, however, this may not be the case. 

Hence, it analogously utilizes a “soft margin” loss 

function that introduces the slack variables ξi, ξi∗ to 

cope with the otherwise unfeasible constraints of the 

optimization problem which is defined as:  

 

 

 

 

 

 

SVMs also allow us to assume that f(x) is non-linear, 

if so, the data can be mapped into a higher 

dimensional space, called kernel space. This 

replaces all instances of x with k(xi, xj), 

transforming it from feature to kernel space. In this 

case, Radial Basis Function kernel (RBF) also called 

Gaussian kernel proved to work best, which is 

defined as: 

 KRBF (x, x′) = exp [−γ∥x − x′∥2]  

where γ is a parameter that sets the “spread” of the 

kernel [13]. 

3.3 Random Forest Classifier 

Random forest distinguishes from our previous 

models given that it is an ensemble method, meaning 

that it is made up of a large number of decision trees 

called estimators, which each produce their own 

predictions. The random forest model combines the 

predictions of the estimators to produce a more 

accurate prediction. Since it also helps to avoid 

overfitting, this algorithm was also tested for our 

model [14].        

4. Results, Discussion & Future Work

     

 All results come from the optimized 

versions of the models discussed. This was done by 

fine-tuning the hyperparameters of each model 

utilizing Sckit-Learn’s GridSearchSV with cross-

validation to evaluate all possible combinations of 

hyperparameter values and finding the best 

combination.  

  

https://en.wikipedia.org/wiki/Logistic_function
https://deepai.org/machine-learning-glossary-and-terms/decision-tree
https://deepai.org/machine-learning-glossary-and-terms/estimator


4.1 Results  

Model Set Accuracy AUC ROC 

Logistic  Train 0.5608 0.5590 

Logistic  Test 0.5320 0.5289 

SVM Train 0.5752 0.5638 

SVM Test 0.5658 0.5572 

Random 

Forest Train 0.5897 0.5762 

Random 

Forest Test 0.6034 0.5897 

Table 2: Comparison table of all models’ 

performances 

All tested models performed among the same 

accuracy and AUC ROC range on both the train and 

test set. The best result was achieved by the Random 

Forest Classifier, with an Accuracy of 60.34% and 

AUC ROC of 58.97% on the test set.  

This accuracy as well as AUC ROC results are low, 

showing that the model is underfitting (has high 

bias). After a thorough analysis of the models and 

their corresponding training, we concluded that the 

models were not underfitting due to some training 

mistake, poor future engineering/selection, or any 

under adjustments of hyperparameters.  The 

previous descriptive analysis created makes a strong 

case that the models are having low performance due 

to the quality and quantity of the data. The extremely 

low levels of correlation between the features and 

the target variable were unusual (Figure 1). 

Additionally, there was never a clear distinction 

between high and low content of free lime, even 

when utilizing PCA (Figure 2). Furthermore, high 

levels of contamination were observed in the data 

cleaning process leaving a small dataset behind to 

work with.  

4.2 Discussion     

 There are inherent limitations and 

challenges when training machine learning models 

with small datasets. In this study, the response 

variable was limited; it can be assumed that the 

performance of the model could be significantly 

improved with more data. On the other hand, the 

data showed an abnormal behavior on the free lime 

content, showing no clear distinction in high free 

lime sensors from those of low free lime making it 

almost impossible to obtain an accurate model. This 

could be due to the fact that workers manually 

record the free lime content, which implies that the 

values could have been rounded or not registered 

accurately. Another explanation is that the sensors 

are not calibrated well enough or even damaged, 

thus causing bad readings. Lastly, the kiln indicator 

in the dataset stated large gaps of “off” status, 

meaning loss of independent variable data.   

4.3 Future Work 

 Another algorithm that can be implemented 

with the current dataset is XGBoost, which is an 

ensemble method similar to Random Forest, but that 

has proven to be more efficient with small datasets. 

In the future, it is expected to have a larger and 

better-quality dataset that can demonstrate the 

theoretical behavior of the free lime content with 

respect to the sensors that are involved in the 

process. Multilayer Perceptron neural network 

(MLP) implementation can be an alternate model 

that can adapt better and significantly increase the 

models’ performance if a larger data set is given. 

Another alternative is to use the dataset of another 

plant that has more periods of on status  in the kiln. 
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